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Determination of the Temperature Dependence of the Magnetic Anisotropy
Constant in Magnetite Nanoparticles

Sunghyun Yoon∗

Department of Physics, Gunsan National University, Gunsan 573-701, Korea

(Received 10 October 2011)

The temperature dependence of the effective magnetic anisotropy constant, K(T ), of Fe3O4 (mag-
netite) nanoparticles is obtained based on SQUID (superconducting quantum interference device)
magnetometry. The variation of the blocking temperature, TB , as a function of particle radius, r, is
first determined by associating the particle size distribution and the anisotropy energy barrier dis-
tribution deduced from the hysteresis curve and from the magnetization decay curve, respectively.
Finally, the magnetic anisotropy constant at each temperature is calculated from the relation be-
tween r and TB . The resultant effective magnetic anisotropy constant K(T ) decreases markedly
with increasing temperature from 5.9 × 105 J/m3 at 5 K to 1.1 × 104 J/m3 at 280 K.
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I. INTRODUCTION

The dynamics of the relaxation behavior of super-
paramagnetic nanoparticles is mainly governed by the
anisotropy constant, as well as the composition, size and
surfactant of the particles [1]. The magnetization vec-
tor in a single-domain particle tends to align along a
direction, called the easy axis, that yields the minimum
magnetocrystalline anisotropy energy. This anisotropy
energy acts as an energy barrier that limits free rota-
tion of the magnetic moments away from the easy axis.
When the energy barrier is overcome thermally, the mag-
netization can reverse its direction rapidly, exhibiting a
superparamagnetic relaxation. For non-interacting par-
ticles with uniaxial anisotropy, the relaxation time for
the reversal process is described by the Néel-Arrhenius
equation [2]

τ = τ0 exp (∆EA/kBT ) , (1)

where kB is Boltzmann’s constant, T is the absolute tem-
perature, and τ0 is an attempt time on the order of 10−9

– 10−13 s. ∆EA = KV is the anisotropy energy barrier,
where K is the effective anisotropy constant and V is
the particle volume. The temperature at which this re-
laxation time τ equals the measurement time τm and at
which the particle system goes into the superparamag-
netic region is the blocking temperature TB .

Since the magnetic anisotropy constant determines the
energy barrier for the coherent rotation of the parti-
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cle moment, its characterization is very important for
practical applications of the relaxation mechanism in
superparamagnetic nanoparticles. Several experimental
techniques are currently employed to infer the magni-
tude of the magnetic anisotropy constant K. The most
typical way is to obtain TB from field cooled (FC) -
zero field cooled (ZFC) magnetization measurements and
to determine the K value by using the equation K =
25kBTB/<V > [3,4]. Here, <V > is the median volume
of the particles, and the factor 25 is a typical ln(τm/τ0)
value for conventional magnetometry. It is a quick
and convenient method widely used recently for highly-
monodispersed nanoparticles [5]. Another method fre-
quently used is to obtain the relaxation times from two
different tools with different measuring time scales and
to solve for K and τ0 by using Eq. (1) [6,7]. Besides,
the K value can be deduced either from the coercivity
and the saturation magnetization in the hysteresis loop
measurement [8] or from the low-temperature variation
of the hyperfine magnetic field by using Mössbauer spec-
troscopy [9]. One can alternatively use the ac method,
in which the temperature dependence of the ac suscep-
tibility is measured within a range of the frequency f
[10]. In this case, ln(1/f) shows a linear relationship
to the reciprocal of the temperature at which the sus-
ceptibility is a maximum, from whose slope one can de-
termine the anisotropy constant. However, most of the
works mentioned above use only the average particle size
in their calculations, not taking the particle size dis-
tribution into account as a whole. Thus, they get the
magnetic anisotropy as a constant independent of tem-
perature, although a change in the magnetic anisotropy
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with temperature is a well-known physical phenomenon
in magnetic materials [11,12]. An analysis under the as-
sumption that the magnetic anisotropy is constant in a
temperature range where it is indeed changing is already
known to produce erroneous results [13].

There are relatively few experimental studies that de-
termine the magnetic anisotropy throughout a wide tem-
perature range, despite its significance for understanding
the relaxation behavior of superparamagnetic nanopar-
ticles. In this study, a very simple but intuitive and
conceptual method for determining the temperature de-
pendence of the anisotropy constant K(T ) in superpara-
magnetic nanoparticles is introduced. Finally, the valid-
ity of the method is tested by applying it to magnetite
nanoparticles, and the impact of inter-particle interac-
tion on the anisotropy is discussed based on the charac-
teristics of the method.

II. EXPERIMENT

Magnetite nanoparticles were synthesized by using
conventional co-precipitation of FeCl2 and FeCl3 in a
strong alkaline medium [14,15]. Stoichiometric ratios of
FeCl3·6H2O and FeCl2·4H2O were combined to form an
aqueous solution and were slowly added to excess a 1-
M aqueous NH3 solution with vigorous stirring at 80 ◦C.
The black precipitate thus formed was gathered by using
magnetic decantation. After the precipitate had been
washed several times, 25% tetramethylammonium hy-
droxide was added for surface coating. The final prod-
uct was collected and redispersed in water to get a black
colloidal solution of magnetite. In order to prevent prob-
able oxidation, all the processes were carried out under
a flow of N2 gas.

The particle size and morphology were examined by
using the transmission electron microscopy (TEM). The
DC magnetization curve, including the initial curve for
100 µL of the ferrofluid sample, was measured by using a
superconducting quantum interference device (SQUID)
magnetometer. In order to get the blocking tempera-
ture distribution, we measured the temperature depen-
dence of the magnetization decay MTD of the sample as
well. For this measurement, the sample was cooled from
room temperature to 5 K in a magnetic field of 100 G.
Then, the applied field was turned off, and the remanent
magnetization was measured for stepwise increases in the
temperature.

III. RESULTS AND DISCUSSION

A typical TEM image of the particles is presented in
Fig. 1, in which the particles have an irregular morphol-
ogy with some size distribution. The nominal diameter
of the sample, as obtained from an image analysis of the
TEM micrograph, was 10 nm.

Fig. 1. TEM image of the magnetite nanoparticles.

Fig. 2. (a) Results of M vs. H curve analysis for Eq. (2)
and (b) the corresponding log-normal particle size distribu-
tion f(r) for the magnetite nanoparticles.

The room-temperature hysteresis curve for the sample
shows a superparamagnetic behavior with no hysteresis.
In order to estimate the particle size and its distribu-
tion, we fitted the first quadrant part of these hystere-
sis curves (Fig. 2(a)) to the classical Langevin function
L(H,r) weight-averaged with the log-normal particle size
distribution f(r) as in the following equation [16,17]:

M(H) = εMS

∫
L(H, r)f(r)dr, (2)

where MS is the saturated magnetization of the single
domain particles and ε is the volume fraction of the sam-
ple. The optimum median radius was found to be 5.4 nm;
the resultant distribution f(r) is shown in Fig. 2(b).

The anisotropy energy barrier distribution fA(T ) was
obtained from the temperature dependence of the mag-
netization decay MTD of the sample as depicted in Fig. 3,



Determination of the Temperature Dependence of the Magnetic Anisotropy Constant · · · – Sunghyun Yoon -3071-

Fig. 3. Temperature dependence of the magnetization de-
cay for magnetite nanoparticles cooled under a magnetic field
of 100 G. The histogram is the anisotropy energy barrier dis-
tribution fA(T ) deduced from Eq. (3).

in which the magnetization decreases with increasing
temperature and finally vanishes at 280 K. In view of
the fact that the unblocked particles cannot contribute
to the residual magnetization, more and more particles
are getting unblocked with increasing temperature, and
280 K is the temperature at which the unblocking of the
largest particles in the sample takes place. Consequently,
MTD at a given temperature is a measure of the frac-
tion of nanoparticles in the sample that are still blocked
within the measurement time scale τm. Since this frac-
tion decreases gradually as the energy barrier is overcome
thermally with increasing temperature, the slope of the
magnetization decay curve at any temperature gives the
energy barrier distribution fA(T ) [17]:

fA(T ) ∝ −dMTD

dT

∣∣∣∣
T

. (3)

The histogram in Fig. 3 shows the resultant energy bar-
rier distribution fA(T ). If the anisotropy constant were
temperature independent, the anisotropy energy barrier
distribution fA(T ) would have had the same log-normal
form as the size distribution f(r). Actually, some studies
report that this is indeed the case [18], but this does not
always hold, in general [19]. From Fig. 2(b) and the his-
togram in Fig. 3, fA(T ) can be seen to skew to the right
whereas f(r) skews to the left (ordinary log-normal dis-
tribution). This discrepancy can be explained if a tem-
perature dependence is introduced into the anisotropy
constant.

Now, we have two different distributions at hand, so
the next step is to associate them to extract information
on the temperature dependence of the anisotropy con-
stant. Immediately after the cooling down to 5 K under
an external magnetic field is achieved, most of the par-
ticle moments are blocked along the field direction. As
the temperature increases higher and higher, larger and
larger particles in the distribution f(r) are unblocked
and begin flipping faster than the measuring time scale

Fig. 4. (a) TB as a function of r obtained programmatically
from the analysis of Eq. (4) and (b) the temperature depen-
dence of the effective anisotropy constant K(T ) for magnetite
nanoparticles calculated from Eq. (5).

τm. This means more and more of the energy barrier
in the distribution fA(T ) is overcome. To be more spe-
cific, assume x% of the sample is in the superparamag-
netic state for a given particle size distribution. Then,
one can obtain an estimate of the corresponding blocking
temperature from the distribution of the energy barrier
by evaluating the critical temperature at which the same
x% of the cumulative energy barrier is overcome. Math-
ematically, this can be represented as∫ r(TB)

0

f(r′)dr′ =
∫ TB

5

fA(T ′)dT ′, (4)

where r(TB) is the radius of the particles whose blocking
temperature is TB .

By taking two equal quantiles from each of the dis-
tributions, one can get a relation between the particle
radius r and the corresponding blocking temperature
TB , as shown in Fig. 4(a). If the anisotropy constant
K is a constant in temperature, TB should show a sim-
ple steep increase with increasing r. However, TB shows
a trend toward saturation, which strongly suggests the
possibility that K should decrease with increasing tem-
perature. Fernandez reported a similar saturation be-
havior in TB(r) by introducing temperature-dependent
magnetic anisotropy constants for Ni and Co nanoparti-
cles [13]. Substituting the values of r and TB into Eq. (1)
and rearranging it, we can estimate the anisotropy con-
stant at a given temperature as

K(T ) =
kBT

V (r)
ln

(
τm

τ0

)
, (5)

where τm was set to 100 s, which is suitable for conven-
tional magnetometry. In order to go further, however,
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one needs to decide the other unknown parameter τ0 in
Eq. (5) . During the programmatic process of the calcu-
lation, the value of τ0 was chosen in such a way that the
anisotropy constant at 280 K becomes 1.1 × 104 J/m3,
as reported in the literature [20]. This was obtained for
τ0 = 1.3 × 10−12 s, which is somehow shorter than, but
is still within, the values reported in the literature [6,22].
If this study is backed up by a complementary measure-
ment with a different characteristic time scale, such as
Mössbauer spectroscopy, one can get a precise value of
τ0, as well.

The resultant temperature dependence of the
anisotropy constant for the present sample is represented
in Fig. 4(b). Note that neither a median volume deduced
from f(r) or a TEM micrograph, nor a median blocking
temperature deduced from fA(T ) was used in the course
of the calculation. The anisotropy constant obviously
decreases with increasing temperature. The anisotropy
constant has often been empirically assumed to decrease
linearly with temperature as K(T ) = K(0)(1 − T/TA),
where K(0) and TA are the anisotropy at 0 K and the
temperature corresponding to zero anisotropy, respec-
tively [23,24]. The anisotropy constant in Fig. 4(b) ex-
hibits, however, a more complicated variation with tem-
perature. At this stage, the physical origin for the non-
trivial variation is not clear. In view of the reduced slope
of the blocking temperature variation in Fig. 4(a), a re-
versal of the magnetization in larger particles (r > 6 nm)
may take place through an incoherent rotation inside the
particles. However, this needs to be verified further.

The anisotropy constant at 5 K is more than one or-
der of magnitude larger than that at 280 K in the present
study. Such an enhancement in the anisotropy constant
at low temperatures has also been reported in previous
studies [24]. The enhanced anisotropy at low tempera-
ture in the present study may well be attributed to an
extra energy barrier resulting from an inter-particle in-
teraction between smaller particles that get unblocked
at low temperature [25]. The underlying physics of the
method introduced in this study is based on the block-
ing/unblocking mechanism of single domain particles ac-
cording to their sizes, which allows this method to more
sensitively reflect the size distribution. Smaller particles
are easily unblocked at lower temperatures. Moreover,
because smaller particles have a larger surface/volume
ratio, they are especially susceptible to inter-particle ef-
fects through the interaction of surface magnetic mo-
ments with those of neighboring grains. Putting these to-
gether, one can conclude that a contribution from inter-
particle interactions in smaller particles may result in the
enhanced K at low temperatures in Fig. 4(b). In addi-
tion, it is also noteworthy that a high-quality monodis-
persed sample was not required for this study. Rather, a
polydispersed sample with a moderate size distribution
width was preferred so as to obtain a variation of the
anisotropy constant over a wider temperature range.

IV. CONCLUSION

The temperature dependence of the anisotropy con-
stant for Fe3O4 nanoparticles was studied through an
analysis of the freezing dynamics of particles of differ-
ent sizes. The temperature dependence of the mag-
netic anisotropy constant, K(T ), for nanoparticles was
determined from the particle size distribution and the
anisotropy energy barrier distribution deduced from
magnetometry measurements. Under the simple as-
sumption that the superparamagnetic fraction of the cu-
mulative area in the particle size distribution at a tem-
perature is equal to the fraction of anisotropy energy
barrier overcome at that temperature in the anisotropy
energy barrier distribution, we were able to get a relation
between r and TB , from which the temperature depen-
dence of the magnetic anisotropy constant was deter-
mined. The resultant magnetic anisotropy constant de-
creased monotonically with increasing temperature. The
anisotropy constant at low temperatures was far more
than one order of magnitude larger than that at 280
K, indicating the effects of inter-particle interactions in
the surface, which is known to be more pronounced for
smaller particles. This was anticipated because the mea-
surements were done with a dried powder. In this re-
spect, a supplementary experiment with a sample free of
inter-particle interactions is required for comparison.
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